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The accurate characterization of atmospheric moisture fields (including water vapor and clouds) is essential for improved forecasts of cool- and warm-season heavy precipitation events associated with Atmospheric Rivers (AR) and AR-like events observed around the world. Our
experience with the AR Observatories established along the West Coast of North America has resulted in the development and implementation of new tools and techniques to quantify the characteristics of AR’s at landfall, and new techniques to quantify observation errors and
monitor the accuracy of satellite water vapor observations on landfall. More problematic is the verification of the accuracy of moisture observations and analyses over the open ocean that are needed to improve longer-range forecasts and warnings of heavy precipitation
associated with landfalling AR’s. This paper presents initial results from ongoing GPS-Met observations made from offshore oil production platforms more than 100 km offshore in the Gulf of Mexico that describe for the first time the error characteristics of satellite microwave
TPW estimates.
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(a) Plan-view schematic (left) showing the relative positions of an atmospheric river and polar cold front.

(b) Cross-section schematic (right) highlighting the offshore vertical structure of wind speed, moist static 3 Moistu re Flux 5 REfe rences

stability, and along-river water vapor flux. Schematic orographic clouds and precipitation upon landfall are
shown on the right, with the spacing between the rain streaks proportional to rain intensity.
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