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Overview: NOAA continues to be an integral component of NASA’s Precipitation Measurement Proposed NOAA EPPS
Missions (PMM) Science Team. Figure 1 shows the synergistic relationship between NASA and Operational Environment
NOAA in terms of operations to research (O2R) and research to operations (R20). NOAA Enterprise Precipitation
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More information about HMT: hmt.noaa.gov
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addition, remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network approaches (i.e., radar, gauge, satellite) as well as an opportunity to
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Under the limited funding support ($50K), we are able to study what GPM radar data can improve on analysis using a data e Control variables rain, snow, graupel, cloud liquid, cloud ice

assimilation system.

e Start with dBZ measurements from Ku band
o Similar to TRMM radar, but more sensitive
» Generally Rayleigh scattering regime, though may need corrections for large hydrometeors
» Use LAPS/WRF conversions from hydrometeors to dBZ

. main effort is on research of forward operators for GPM radar data;

. the fast forward models found are difficult to implement into data assimilation systems due to the complexity or non-
differentiability of the forward models (e.g., Matsui GPM simulator and others listed at

https://sites.google.com/site/satellitesimulators/nome);

. our research then focuses on if we can use Local Analysis and Prediction System (LAPS) 10cm radar operator for GPM e Up-front attenuation corrections, based on Ku and Ka band data, as well as microwave imager

radar data;
«  one objective identified is how we can use GPM dual frequency radar data to analyze snow content (Liao et al. 2005); e Kaband can see smaller hydrometeors, though would be outside Rayleigh scattering regime for most
. next step is to use LAPS operator to assimilate GPM for analysis and forecast improvement and validation of these radar SlEElRlENEn (X6 [BEne) 15 eiisen KU [Deiel el [EeEr on Clovesa

datasets.

e Use radar reflectivity values and ambient temperature to help constrain F|gu e 10
hydrometeor type
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